Hey, everyone.I had promblems when I training the classifier:
qiime feature-classifier fit-classifier-naive-bayes --i-reference-reads ref-se
qs.qza --i-reference-taxonomy taxonomy_all_levels.qza --o-classifier silva_132_99_16S_classifier.qza
Plugin error from feature-classifier:
Debug info has been saved to /tmp/qiime2-q2cli-err-0j3v09sv.log
Here's the log.
/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/q2_feature_classifier/classifier.py:101: UserWarning: The TaxonomicClassifier artifact that results from this method was trained using scikit-learn version 0.19.1. It cannot be used with other versions of scikit-learn. (While the classifier may complete successfully, the results will be unreliable.)
warnings.warn(warning, UserWarning)
Traceback (most recent call last):
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/q2cli/commands.py", line 274, in call
results = action(**arguments)
File "", line 2, in fit_classifier_naive_bayes
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/qiime2/sdk/action.py", line 231, in bound_callable
output_types, provenance)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/qiime2/sdk/action.py", line 362, in callable_executor
output_views = self._callable(**view_args)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/q2_feature_classifier/classifier.py", line 316, in generic_fitter
pipeline)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/q2_feature_classifier/_skl.py", line 32, in fit_pipeline
pipeline.fit(X, y)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/sklearn/pipeline.py", line 250, in fit
self.final_estimator.fit(Xt, y, **fit_params)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/q2_feature_classifier/custom.py", line 41, in fit
classes=classes)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/sklearn/naive_bayes.py", line 527, in partial_fit
Y = label_binarize(y, classes=self.classes)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/sklearn/preprocessing/label.py", line 522, in label_binarize
Y = Y.toarray()
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/scipy/sparse/compressed.py", line 964, in toarray
return self.tocoo(copy=False).toarray(order=order, out=out)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/scipy/sparse/coo.py", line 252, in toarray
B = self._process_toarray_args(order, out)
File "/home/qiime2/miniconda/envs/qiime2-2018.8/lib/python3.5/site-packages/scipy/sparse/base.py", line 1039, in _process_toarray_args
return np.zeros(self.shape, dtype=self.dtype, order=order)
MemoryError