#### Illumina #### 1) QIIME2 activation on WSL ################ conda activate qiime2-2020.8 2) Directory ############### cd Illumina2 3) Import data with Casava 1.8 paired-end demultiplexed fastq ### ### Datas was already Demultiplexed, by which we used the Casava 1.8 ### ### Thus, Demultiplexing is not needed ### qiime tools import \ --type 'SampleData[PairedEndSequencesWithQuality]' \ --input-path Raw_data \ --input-format CasavaOneEightSingleLanePerSampleDirFmt \ --output-path demux-paired-end.qza 4) Check the data ### qiime tools peek demux-paired-end.qza 5) Add metadata ### qiime metadata tabulate \ --m-input-file design.tsv \ --o-visualization metadata.qzv 6) Data visualization ### qiime demux summarize \ --i-data demux-paired-end.qza \ --o-visualization demux.qzv 7) Denoising ### ### The file "demux.qzv" can be visualized in the QIIME2 view website ### ### Trim and truncate values were obtained after check the quality plots ### ### Primers, 515F (5’ GTG YCA GCM GCC GCG GTA A 3’) and 806R (5’ GGA CTA CNV GGG TWT CTA AT 3’) ### qiime dada2 denoise-paired \ --i-demultiplexed-seqs demux-paired-end.qza \ --p-trim-left-f 19 \ --p-trunc-len-f 299 \ --p-trim-left-r 20 \ --p-trunc-len-r 259 \ --o-representative-sequences rep-seqs-dada2.qza \ --o-table table-dada2.qza \ --o-denoising-stats stats-dada2.qza 8) Visualization of denoising results ### qiime metadata tabulate \ --m-input-file stats-dada2.qza \ --o-visualization stats-dada2.qzv 9) Rename the last two tables ### mv rep-seqs-dada2.qza rep-seqs.qza mv table-dada2.qza table.qza 10) Summary table from previous results (ASVs and sequences) ### qiime feature-table summarize \ --i-table table.qza \ --o-visualization table.qzv \ --m-sample-metadata-file design.tsv qiime feature-table tabulate-seqs \ --i-data rep-seqs.qza \ --o-visualization rep-seqs.qzv 11) Taxonomic analysis ### ### Here we used SILVA 138 database qiime feature-classifier classify-sklearn \ --i-classifier silva-138-99-515-806-nb-classifier.qza \ --i-reads rep-seqs.qza \ --o-classification taxonomy.qza qiime metadata tabulate \ --m-input-file table.qza \ --o-visualization taxonomy_table.qzv 12) Filtering by Eukaryota, mitochondria, and chloroplast ### qiime taxa filter-table \ --i-table table.qza \ --i-taxonomy taxonomy.qza \ --p-exclude Eukaryota,Mitochondria,Chloroplast \ --o-filtered-table table-filtered.qza 13) Filtering by rare sfeatures (min. in 2 samples) and frequency (min. 10 counts) ### qiime feature-table filter-features \ --i-table table-filtered.qza \ --p-min-frequency 10 \ --p-min-samples 2 \ --o-filtered-table table-filtered2.qza ### Summary table of this process (visualization) qiime feature-table summarize \ --i-table table-filtered2.qza \ --o-visualization table-filtered2.qzv \ --m-sample-metadata-file design.tsv 14) Filtering of sequences by the previous ASV filtered table ("table-filtered2.qza") ### qiime feature-table filter-seqs \ --i-data rep-seqs.qza \ --i-table table-filtered2.qza \ --o-filtered-data seq-filtered.qza qiime feature-table tabulate-seqs \ --i-data seq-filtered.qza \ --o-visualization seq-filtered.qzv 15) Rarefy table-filtered2 to export it (further external analysis) ### ### Sampling depth (6418) is the maximun possible depth whitout lossing samples qiime feature-table rarefy \ --i-table table-filtered2.qza \ --p-sampling-depth 6418 \ --o-rarefied-table rarefied-table-filtered2.qza qiime feature-table summarize \ --i-table rarefied-table-filtered2.qza \ --o-visualization rarefied-table-filtered2.qzv \ --m-sample-metadata-file design.tsv 16) Exportar la Feature and Taxonomy table ### qiime tools export \ --input-path rarefied-table-filtered2.qza \ --output-path exported-feature-table-filtered-rarefied # in the folder... biom convert -i feature-table.biom -o feature-table.tsv --to-tsv # back to Illumina2 qiime tools export \ --input-path taxonomy.qza \ --output-path exported-feature-table-filtered-rarefied ############################################################################ Previous exported and rarefied data will be used in R for further analysis such as Venn diagram and Co-ocurrence network Now, alpha and beta diversity will be calculated in QIIME2 ¡¡¡ The same sampling depth is used in rarefied table and diversity metrics ¡¡¡ ############################################################################ 17) Phylogenetic tree, which will be used to estimate diversity metrics ### ### here, we used FILTERED sequences table (whitout organells, eukaryota, and rare ASVs) but no rarefied table # since the QIIME pluggin will make this rarefaction in this process, it only needs the sampling depth qiime phylogeny align-to-tree-mafft-fasttree \ --i-sequences seq-filtered.qza \ --o-alignment aligned-rep-seqs.qza \ --o-masked-alignment masked-aligned-rep-seqs.qza \ --o-tree unrooted-tree.qza \ --o-rooted-tree rooted-tree.qza 18) Alpha diversity ### ### Here, we calculate ALL diversity metrics (alpha and beta) qiime diversity core-metrics-phylogenetic \ --i-phylogeny rooted-tree.qza \ --i-table table-filtered2.qza \ --p-sampling-depth 6418 \ --m-metadata-file design.tsv \ --output-dir core-metrics-results-depth6418